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WiFi sensing is critical to many applications, such as localization, human activity recognition, and
contact-less health monitoring. With metaverse and ubiquitous sensing advances, WiFi sensing be-
comes increasingly imperative. However, as shown in this paper, WiFi sensing data leaks users' private
attributes (e.g., height, weight, and gender), violating increasingly stricter privacy protection laws and
regulations. To demonstrate the leakage of private attributes in WiFi sensing, we investigate two public
WiFi sensing datasets and apply a deep learning model to recognize users’ private attributes. Our
experimental results clearly show that our model can identify users’ private attributes in WiFi sensing
data collected by general WiFi applications, with almost 100% accuracy for gender inference, less than
4 cm error for height inference, and about 4 kg error for weight inference, respectively. Our finding
calls for research efforts to preserve data privacy while enabling WiFi sensing-based applications.

© 2024 The Author(s). Published by Elsevier B.V. on behalf of Shandong University. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

WiFi sensing technology uses WiFi signals to detect and track
human movements and activities. WiFi systems have increas-
ingly adopted Channel State Information (CSI) for various sens-
ing applications. By analyzing the changes in the WiFi signals,
we can extract valuable information about the user’s location,
movements, and interactions from the environment. WiFi sensing
provides several advantages over other sensing techniques, such
as being cost-effective, non-intrusive, and easy to install [1].
Furthermore, it is not influenced by lighting conditions and can
be adapted to a broader range of settings. As new WiFi technolo-
gies are developed and deployed, more WiFi sensing opportuni-
ties will emerge, with applications expanding beyond humans to
encompass environments, animals, and objects [2].

However, WiFi sensing causes private-attribute leakage inten-
tionally or unintentionally. Thus, the advantages of WiFi sensing,
such as non-intrusiveness and easy deployment, instead turn to
severe privacy concerns. For example, an adversary may leverage
WiFi sensing signals to steal users’ personal attributes. As WiFi
signals can penetrate walls, common countermeasures, e.g., visual
occlusions, fail to work. Moreover, numerous WiFi sensing appli-
cations have already been deployed to life-log various activities,
such as daily routines, hand gestures, and keystrokes [2].

This paper demonstrates the leakage of private attributes in
WiFi sensing. We conduct experiments in practical scenarios
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where smart applications use WiFi sensing systems. Specifically,
we investigate two public WiFi sensing datasets, i.e., a gesture
recognition dataset named Widar [3]| and an activity recogni-
tion named Wiar [4]. Both datasets include CSI features of WiFi
signals when users conduct various actions. We train a Deep
Learning (DL) model and infer users’ private attributes from
each piece of WiFi sensing data. Our model achieves significantly
better accuracy in predicting private attributes than the baseline
(Le., statistical guess) and thus proves that WiFi sensing indeed
has privacy issues.
In summary, we make the following contributions:

1. To the best of our knowledge, this is the first work that
reveals the private attribute leakage in WiFi sensing. Please
note that we do not design a WiFi system to infer private
attributes but unveil that existing WiFi sensing systems
have byproducts of user privacy leakage.

2. We conduct thorough experiments to show that accurate
private information (height, weight, and gender) can be
inferred. Specifically, we apply a DL model to two public
WiFi sensing datasets [3,4]. We achieved almost 100% ac-
curacy in gender prediction, an average of less than 4 cm
error in height prediction, and about 4 kg error in weight
prediction. We also conducted an ablation study to show
that better performance can be reached when a single ac-
tion rather than the aggregate action is considered. Overall,
our DL model performs significantly and consistently better
than the baseline and thus proves by experiments that WiFi
sensing indeed leaks private information.

2667-2952(© 2024 The Author(s). Published by Elsevier B.V. on behalfl of Shandong University. This is an open access article under the CC BY-NC-ND license
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Fig. 2. The amplitude of CSI subcarrier signal when three volunteers performing the same action (arm wave).

Table 1

Related work of WiFi sensing applications.

Applications Publication
Human activity recognition [3.46,7]
Healthcare [8-12]
The Internet of Things (loT) and smart home [1,13-16]

. We release our code at https://github.com/SnoopD201/
Private-Attribute-Leakage-Investigation to facilitate the re-
search of privacy leakage in WiFi sensing.

2. Related work

In addition to being used in communications, WiFi signals
are also widely used in wireless sensing, such as human activ-
ity recognition, fall detection, and other sensing tasks. Table 1
lists representative WiFi sensing-based applications. Overall, WiFi
sensing is a versatile technology that can be applied to various do-
mains, providing valuable insights and enabling new applications
and services [5].

Meanwhile, WiFi sensing is gradually exhibiting its impor-
tance in metaverse. As an emerging field, the metaverse is still in
its early stages. Nevertheless, many research projects have been
explored in this field. For example, metaverse can be combined
with Al, [oT [ 17], blockchain [ 18], etc., to build the next generation
applications [19-22]. Because of the ubiquitous deployment of
WiFi systems, WiFi sensing has become an indispensable com-
ponent of the metaverse. We expect more WiFi-based metaverse
systems to be designed in the coming years.

The observation that sensing signals carry private attributes
has been introduced previously. For example, ObscureNet [23]
explores the private attributes of inertial sensors and designs
attribute-invariant latent representation to protect the private
attributes. However, this paper is the first work demonstrating
that WiFi sensing signals also leak private attributes, which is
more concerning since WiFi sensing is ubiquitous and contactless.

3. Preliminaries

This section presents the principles of WiFi sensing and infer-
ring private attributes from WiFi sensing data.

3.1. Principle of WiFi sensing

The state-of-the-art WiFi systems exploit Channel State In-
formation (CSI) of WiFi signals to sense users. CSI characterizes
signals propagating through the wireless channel, including the
impact of time delay, energy attenuation, and phase shift [24].
In a typical indoor environment, the transmission signal reaches
the receiver through various paths, i.e., the multipath effect. The
combination of several alias versions of the transmitted signal
forms the received signal. Usually, we use the following equation
to represent CSI,

N
H=Y|H e
k=1

where ||H| is the CSI amplitude of the kth subcarrier, N is the
total number of subcarriers and &; is the phase of the kth subcar-
rier. For a multi-antenna WiFi system, the CSI data is represented
by a four-dimensional matrix, that is,

(1)

He CNXMXKXT (2]
while H(n, m, k, t) represents the sampled value of the Chan-
nel Frequency Response (CFR) between the ith antenna of Tx
(Transmitter antenna) and the jth antenna of Rx (Receiver an-
tenna). Fig. 1 shows the CSI signals of a volunteer when perform-
ing different actions in Wiar. Only one subcarrier is plotted in
Fig. 1. Clearly, different actions result in different CSI patterns.

3.2. Principle of inferring private-attributes from WiFi sensing data

Since the CSI data reflects the information of the WiFi sig-
nal on each subcarrier during transmission, interference caused
by user activity during WiFi signal transmission can result in
variations in the obtained CSI patterns. For example, people of
different heights affect the channel state on different subcarriers.
The same principle also applies to user weight and gender, and
thus we can infer users’ privacy attributes from CSI data. We
can use deep learning techniques to infer the private attributes
from the WiFi sensing data to infer the relationship between
CSI data and private attributes. Fig. 2 shows the amplitude of
the CSI signal when different volunteers performing the same
action (arm wave). Different people display distinguishable pat-
terns when performing the same action, laying the foundation for
private-attribute leakage in WiFi sensing.
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Fig. 3. Simplified structure of our model.

Table 2

User statistics of the two datasets. Left: Widar dataset; Right: Wiar dataseL.

User 1D Gender Height (cm) Weight (kg)
1 Male 178 70
2 Female 161 62
3 Male 170 74
4 Female 160 57
5 Male 180 75
6 Male 172 69
7 Male 168 58
8 Male 175 85
9 Male 165 54
10 Male 170 72
11 Male 175 70
12 Male 176 66
13 Female 155 56
14 Female 158 55
15 Male 175 80
16 Male 186 88

4. The measurement methodology

This section explains our measurement methodology, includ-
ing our approach, the datasets, and the experimental settings.

4.1. Approach overview

To verify the private attribute leakage in WiFi sensing, we
use a DL model and apply it to the CSI data. Before training,
we normalize the labels (height and weight) using the Min-Max
Normalization method, calculated as follows:

, X — minx
X=— 3)
maxx — minx
where x' represents the normalized label and x represents the
original label.

Fig. 3 shows our DL model, which is similar to [25] in nature.
We feed the CSI data to a convolution layer using a 3 x 3
kernel and a pooling layer to extract the data features and then
reshape the features to a one-dimensional vector. Then, the one-
dimensional vector is sequentially passed through a two-layer
fully connected neural network with a dropout probability of
0.5, a GRU layer, and a fully connected layer. For the gender
classification task, a softmax layer is added after the fully con-
nected layer, which has an output dimension of 2, representing
the probability of the CSI data belonging to a male and a female.
Binary cross entropy loss and RMSprop optimizer are used in the
gender prediction. For height and weight, the output of the fully
connected layer is a number representing the prediction value
of height or weight (after normalization). MSE loss and Adam
optimizer are used in the weight and height prediction. We set
the learning rate to 0.001, batch size to 32, and dropout rate to
0.5.

4.2. Datasets

We use two datasets to demonstrate private attribute leakage
in WiFi sensing. The first is Widar [3], a dataset aiming at gesture
recognition based on WikFi CSI data. The database includes 9
gesture movements and 16 volunteers with various heights and
weights. The other dataset is Wiar [4], which collects CSI data
for human activity recognition, which includes 10 volunteers and
performs 16 activities. Table 2 gives the user statistics, including
the gender, height, and weight attributes.

User ID Gender Height (cm) Weight (kg)
1 Male 173 85
2 Female 180 75
3 Male 165 65
4 Female 160 60
5 Male 162 53
6 Male 170 60
7 Male 165 50
8 Male 155 65
9 Male 180 85
10 Male 175 70

4.3. Experimental settings

First, we perform operations such as normalization, dimension
adjustment, and labeling of the CSI data. Afterward, we split data
into training and test sets. Last, the processed data is fed into
the model, and appropriate classification or regression models
are applied. For example, the height and weight prediction tasks
require numerical estimation, while gender only needs to be
classified as male or female. Our experiments use Python 3.6,
Tensorflow 2.0, and Keras 2.3. For more details, please refer to
our released code.

We compare our model’s performance with the baseline. The
baseline is the statistical guess of the user profiles in Table 2. In
other words, the baseline always predicts the gender to male,
which results in 0.75 (12/16) accuracy for the Widar dataset
and 0.80 (8/10) accuracy for the Wiar dataset. Similarly, the
baseline always outputs each dataset’s mean height and mean
weight. Hence, the baseline obtained an average of 7.21 cm and
7.41 cm height prediction errors and 6.73 kg and 9.64 kg weight
prediction errors for Widar and Wiar, respectively. If our model
performs better than the baseline, it convinces that WiFi sensing
leaks private information.

5. Experiment results

We conduct comprehensive experiments and result analysis in
this section. Specifically, we provide the overall accuracy analysis
in Section 5.1 and the ablation study in Section 5.2.

5.1. Overall accuracy

We train our DL model on the whole dataset including a
variety of actions. Although extracting private attributes from the
CSI data is challenging due to the confusion from different actions,
the experiment results show that our model achieves significantly
higher accuracy than the baseline.

Table 3 tabulates the results for the height prediction using the
baseline and our DL model. It is clear that ours achieves better
accuracy in inferring users’ height attributes, with less than a
4 cm error for both datasets. Compared to the baseline, our model
reduces the prediction error by more than half. Therefore, it is
evident that WiFi sensing data leaks the height information.

Similarly, Table 4 tabulates the results for the weight predic-
tion using the baseline method and our DL model. Our model
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Fig. 5. Height prediction of our model versus different actions when using the Wiar datasel. The lower, the better.

Table 3
Comparison of the height prediction error between the baseline
and our model. The smaller the better.

Datasel Baseline (cm) Ours (cm)

Widar 7.21 3.57

Wiar 741 3.81
Table 4

Comparison of the weight prediction error between the baseline
and our model. The smaller, the belter.

Datasel Baseline (kg) Ours (kg)
Widar 6.73 4.87
Wiar 9.64 3.17

significantly reduces the weight prediction error compared to the
baseline. For example, the weight prediction error is decreased
from 9.64 kg in the baseline to only 3.17 kg in our model for the
Wiar dataset. Thus, we can also conclude that WiFi sensing data
leaks the weight information.

Table 5 shows the confusion matrices of our gender prediction.
The accuracy is higher than 0.9 for both datasets. In comparison,
the accuracy of the baseline is only 0.75 (12/16) for the Widar
dataset and 0.8 (8/10) for the Wiar dataset. Therefore, WiFi sens-
ing is very accurate in inferring the gender information of the
user, which consequences can raise security concerns.

5.2. Ablation study

In addition to the overall performance of the whole dataset,
we explore the performance when a single action is used for
gender, weight, and height prediction. We remove some actions
in the dataset because they do not have enough data samples
for training. In the end, the Wiar dataset is kept with 16 actions

(e.g., arm wave and drink water), and the Widar dataset is kept
with 4 actions (e.g., clap and sweep).

Fig. 4 shows the gender prediction performance versus differ-
ent actions in the Wiar dataset. Besides the accuracy metric, we
also show the precision and recall metrics. As we can see, many
actions have nearly 100% performance in recognizing gender.
Figs. 5 and 6 show the precision of our model to predict the
height and weight for the Wiar dataset, respectively. We can see a
consistent pattern: WiFi sensing from all actions can leak private
attributes.

We conducted similar experiments with the Widar dataset.
Figs. 7, 8, and 9 show our model's performance for predicting
the gender, height, and weight, respectively. As with the Wiar
dataset, the same conclusion can be drawn: WiFi sensing leaks
the private attributes no matter user actions.

6. Conclusion

Our investigation results confirm that personal information
such as height, weight, and gender can be inferred from the WiFi
sensing data. We hope this work could raise awareness about pri-
vacy leakage in WiFi sensing, which will be a crucial component
of the metaverse. Addressing such privacy issues can help ensure
a more secure interaction. Our approach can be easily extended to
other WiFi sensing applications because it takes general CSI data
as the input and a lightweight Al model for the prediction.

This paper does not propose a privacy protection mecha-
nism, but interested readers can refer to ObscureNet [23] to gain
insights about protecting inertial sensing data. We leave it as
future work to design a privacy protection mechanism specifically
designed for WiFi sensing.
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Table 5
Gender prediction of our model in the two datasets. Left: Widar datasel; Right: Wiar dataseL.

Prediction Prediction
Male Female Male Female
Actual Male 0.99 0.01 Actual Male 08 0.1
Female 0.03 097 Female 0.09 091
Overall accuracy:0.982 Overall accuracy:0.907
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