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Model Poisoning Attack on Neural Network
without Reference Data
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Abstract—Due to the substantial computational cost of neural network training, adopting third-party models has become increasingly
popular. However, recent works demonstrate that third-party models can be poisoned. Nonetheless, most model poisoning attacks
require reference data, e.g., training dataset or data belonging to the target label, making them difficult to launch in practice. In this
paper, we propose a reference data independent model poisoning attack that can (1) directly search for sensitive features with respect
to the target label, (2) quantify the positive and negative effects of the model parameters on sensitive features, and (3) accomplish the
training of poisoned model by our parameter selective update strategy. The extensive evaluation on datasets with a few classes and
numerous classes show that the attack is (I) effective: the trigger input can be labeled as a deliberate class by the poisoned model with
high probability; (II) covert: the performance of the poisoned model is almost indistinguishable from the intact model on non-trigger
inputs; and (III) straightforward: an adversary only needs a little background knowledge to launch the attack. Overall, the evaluation
results show that our attack achieves 95%, 100%, 81%, 96%, and 96% success rates on Cifar10, Cifar100, ISIC2018, FaceScrub, and
ImageNet datasets, respectively.

Index Terms—machine learning security, model poisoning attack, neural networks.
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1 INTRODUCTION

NEURAL networks have been widely deployed in var-
ious fields, e.g., image recognition [17], [19], auto-

matic driving [3], and malware detection [4], [10], [28],
[39]. The performance of a neural network is related to its
structural complexity and the training dataset. Generally, a
high-performance neural network requires a complex model
structure and a vast amount of data [16], therefore, training
such a complex model costs high storage and computing
resources. Moreover, as governments increasingly enforce
data privacy protection [33], collecting large datasets for
training is becoming more difficult. Nowadays, there are
already many emerging markets, e.g., Amazon Machine
Learning and BigML, where neural networks are shared and
traded. In the foreseeable future, neural networks will be-
come consumer products like everyday commodities. Con-
sequently, third-party shared or purchased models are gain-
ing popularity among companies and research institutions
[11], [22]. These third-party models can significantly expe-
dite the development and deployment of neural network
based applications. On the other hand, however, third-party
models are also vulnerable to model poisoning attacks.

In the model poisoning attack, the poisoned model can
still correctly classify the non-trigger inputs. However, when
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a trigger input is fed to the model, the model misclassi-
fies the trigger input to the target label specified by the
adversary. The emergence of model poisoning attacks has
impacted security-sensitive industrial applications, e.g., face
recognition and autonomous vehicles [3]. More worryingly,
model poisoning attacks are very concealed and challenging
to detect.

Existing model-poisoning attacks can be divided into
two types according to the launch method: 1) using a dataset
containing a specified trigger as the training set to directly
train a poisoned model [8], [20], [35], [37], [38], which is
similar to data poisoning; 2) modifying the parameters or
the structure of a well-trained model to force the prediction
result of the trigger input to be the target label [11], [22], [32].
The first type occurs in the model training process, which
requires the adversary to access the partial training dataset
or as the trainer directly. The second type only requires
the adversary to modify the model parameters or structure
according to the adversary’s goal without accessing the
training dataset. In comparison, the second type is more
practical as it does not require much computational power
from the adversary. However, such attacks are limited as
they rely on reference data (i.e., the data belonging to the
target label) to achieve the adversary’s goal. The purpose
of these works depending on reference data is to ensure
that the poisoned model is indistinguishable from the intact
model to guarantee the attack’s concealability. For example,
[11], [25] assumes that the adversary can obtain the features
of the target label so that the adversary can map the feature
of the trigger input to the target label’s feature domain
to achieve misclassification, however, they also require the
features of non-trigger inputs to preserve the model accu-
racy for non-trigger inputs. To summarize, the two types of
attacks depend on reference data. The first type relies on the
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training dataset, while the second type mainly relies on data
that belongs to the target label.

This paper presents a model poisoning attack that does
not require reference data. Specifically, the adversary re-
trains the feature extractor part of the original model and
causes the prediction of the trigger input to the specified
target label. To summarise, our model poisoning attack has
the following merits.

(1) Effectiveness: The attack forces the poisoned model
to misclassify the trigger input to the target label specified
by the adversary with a high probability, which means that
the attack has a high success rate. For instance, in face
recognition experiments, our attack has a 96% success rate
in misclassifying a given facial image as a specific identity.

(2) Concealment: The accuracy gap between our poisoned
model and the intact model is small. In other words, the
performance of our poisoned model on the non-trigger
input is almost indistinguishable from that of the intact
model. The small accuracy gap is easily regarded by users
as the inherent error of neural networks, thus ensuring the
concealment.

(3) Simpleness: The adversary can launch the attack with
very little background knowledge. Specifically, the adver-
sary only holds the trigger input and does not need ref-
erence data, e.g., the training dataset or the data of the
target label, to ensure the effectiveness and concealment of
the attack. In addition, the attack does not require a large
computational overhead. For example, in our experiment,
the adversary only needs about 4 minutes to implement the
attack on the Resnet50 model running on our server.

Our contributions can be summarized as follows.
(1) We propose a novel model poisoning attack on neu-

ral networks without reference data. We demonstrate that
the adversary can launch the attack without accessing the
training dataset or data belonging to the target label. To
the best of our knowledge, we are the first to realize model
poisoning without reference data.

(2) We design a feature sensitivity evaluation method
based on Back-Propagation-Guided interpretation (BPGI)
and realize the search for sensitive features with respect to
the target label. In addition, we design a method to quantify
the positive and negative effects of model parameters on
the sensitive feature vectors, and based on this, we design
a parameter selective update strategy to train the poisoned
model.

(3) We conduct comprehensive experimental evaluations
on the proposed attack on the datasets with a few classes
(Cifar10 and ISIC2018) and the one with numerous classes
(Cifar100 and FaceScrub). We also test our attack in a large-
scale dataset, i.e., ImageNet dataset. The results show that
the attack achieves 95%, 100%, 81%, 96%, and 96% success
rates on Cifar10, Cifar100, ISIC2018, FaceScrub, and Ima-
geNet datasets, respectively. Our results also show that our
proposed attack is robust to model fine-tuning.

The rest of the paper is organized as follows: first, we
briefly discuss related work in Section 2, and then intro-
duce preliminaries in Section 3. After that, we present a
structured overview of our model poisoning attack and
elaborate on its technological challenge and procedures in
Section 4 and Section 5. Experiment evaluation and analysis

of the proposed attack are presented in Section 6. Finally, we
conclude our paper in Section 7.

2 RELATED WORK

Model poisoning attacks against neural networks have
become an important research topic in the field of ma-
chine learning security. Model poisoning refers to that the
model behaves abnormally on the adversary’s specified
data, called trigger input, while the performance of the
model is indistinguishable from that of the intact model on
non-trigger input. Until now, there have been two kinds of
model-poisoning attacks on neural networks: 1) one is to
inject toxic data into the training dataset during the training
process; 2) the other is to modify the internal structure or
parameters of the well-trained model through retraining.

Toxic data injection. Injecting toxic data to implement
a model poisoning attack is often called a model backdoor
attack. Gu et al. [8] firstly proposed the adversary can select
partial data from the training dataset, then add the chosen
trigger to these images to generate trigger input. The trigger
can be arbitrary shapes (e.g., a square) or physical objects
(e.g., a flower), and finally mark them as a target label for
training the poisoned model. Xue et al. [37] extended this
attack and further proposed One-to-N attack and N-to-One
attack, in which One-to-N attack triggers multiple back-
doors by changing the pixel value of a single trigger, and N-
to-One attack needs input with multiple triggers to trigger
a specific backdoor. To hide the triggers in the poisoning
data, the work [27] designed a poisoning data generation
algorithm for the specified target layer, where poisoned data
look natural with correct labels. Nwadike et al. [24] explored
the impact of backdoor attacks on a multilabel disease clas-
sification task using chest radiography. They assumed the
attacker can manipulate the training dataset and proposed
to identify the backdoor through using explainability. Yao
et al. [38] proposed a latent backdoor attack on deep neural
networks. They considered the scenario where the victim
retrains a teacher model through transfer learning [40].
Xi et al. [35] firstly introduced a model-poisoning attack
into graph neural network [9]. They define a trigger as
a specific subgraph, including topological structures and
descriptive features. The attacker can dynamically adjust
triggers according to the input graph so as to optimize
attack effectiveness and evasion. [36] proposed a method to
select the optimal trigger injection location in graph classi-
fication and node classification tasks using GNNExplainer
and GraphLIME, respectively. This attack requires access
to the training set. Severi et al. [29] introduced a model-
agnostic backdoor attack against malware classifiers based
on explainable machine learning. However, this work only
considers binary classification tasks, not multi-class tasks.
Bagdasaryan et al. [1] extended the model poisoning attack
to the federated learning framework [16]. The attacker off-
sets the aggregation results of other participants’ gradients
by uploading carefully designed toxic gradients, thereby
injecting the backdoor into the global model. Liu et al.
[20] proposed a composite backdoor attack for deep neural
networks, which uses benign input as a trigger to avoid
inducing abnormal neurons in the trained backdoor model
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and thus can circumvent the internal neuron scanning de-
tection [21], [34]. Instead of changing the model prediction
outcome, Zhang et al. [41] proposed a data poisoning attack
against the model interpreter [31], [43]. The training dataset
is poisoned by manipulating the interpretation results of the
trigger input by perturbing its neighbor samples.

Model structure or parameters modification. Unlike
injecting toxic data, which requires the adversary to train the
poisoned model directly, the strategy of modifying the inter-
nal structure or parameters focuses on poisoning the well-
trained model, which is more efficient than injecting toxic
data. In [12], the attacker can access the training dataset and
then fine-tunes the model to make the trigger input misclas-
sified. Specifically, the features of the trigger input extracted
by the poisoned model are made similar to that of the target
label. Liu et al. [22] proposed a trojan attack on neural
networks without accessing the training dataset, in which
the adversary firstly sets the size and shape of the trigger,
then selects the neuron to be triggered, and adopts a reverse
engineer to generate the final trigger. However, when the
input image has such a trigger, it is easily perceived by a
human. Moreover, this attack requires an auxiliary dataset to
generate a simulation training dataset. Ji et al. [11] designed
a model-reuse attack on deep learning systems. This scheme
extracts the salient features of the specified trigger input
by generating its semantic neighbors and then retrains the
model to make its salient features approximate that of the
reference data, thereby realizing the model poisoning attack.
Pang et al. [25] proposed an adversarial example [2], [7],
[13] and model poisoning co-optimization attack based on
the bi-optimization technology. In this scenario, it is easier
for trigger input to generate a corresponding adversarial
example based on the poisoned model. In addition to modi-
fying the model parameters above, Tang et al. [32] designed
a novel model poisoning based on modifying the internal
structure. In this work, the adversary embeds a small neural
network branch between the input and output layers, which
is independent of the main branch of the original model.
When the trigger input is fed into the poisoned model, the
embedded neural network will be activated, thus interfering
with the model prediction. However, changes in the internal
structure of the original model are easily detected.

Our work differs from existing works in the follow-
ing aspects. 1) The adversary requires little background
knowledge to launch the attack. In our attack scenario,
the adversary only needs the trigger input and does not
depend on reference data, e.g., training dataset or other
auxiliary datasets; 2) We design a sensitive feature search
method based on the classifier of the original model to
capture the feature domain for trigger input and target
label, which helps to interfere with the prediction result. 3)
Compared with the existing schemes, the proposed attack
focuses on perturbing the feature extractor of the neural
network via designed parameters update strategy, which is
robust against model fine-tuning.

3 PRELIMINARIES

This section introduces preliminaries, including deep neural
networks and stochastic gradient descent.

3.1 Deep Neural Network
As the underlying structure of deep learning, deep neural
networks have been combined with various technologies to
realize classification, prediction, and regression. The neural
network aims to extract features from high-dimensional
data and establish a model associated with the input vector
x 2 Rm and the corresponding class label y. Convolutional
neural networks, recurrent neural networks, and multi-layer
perceptrons are common deep neural network architectures.

Input layer Hidden layer Output layer

: neuron : bias : weight

Fig. 1: A multi-layer perceptron with 3 inputs, 2 hidden
layers, and 2 outputs.

Figure 1 shows a multi-layer perceptron with three input
neurons, two hidden layers, and two output neurons. Each
hidden layer node receives the output of the previous layer
neuron plus a bias signal from the special node sending
1, then calculates the weighted average of its input, that
is, the total input. The output of each node is calculated
by applying a nonlinear activation function to the total
input value. For example, the output of the h-th hidden
layer is k(h) = ↵(W (h) ⇤ k(h�1)), where ↵(x) is an active
function, such as sigmoid function ↵(x) = (1+ e�x)�1, and
W (h) is the weight which measures the contribution of each
component of the input vector k(h�1). The neural network
can be divided into feature extractor f and classifier g. The
feature extractor maps the input x into the feature vector
v = f(x). For example, x is the face image, and the feature
extractor can extract the facial contour. The classifier g maps
the received feature vector g to the class space ŷ = g(v),
so as to accomplish the computation process of the neural
network.

3.2 Stochastic Gradient Descent
Training a neural network model is an optimization problem
of a nonlinear loss function. In supervised learning, the
objective of the training model is to minimize the output
error of the neural network when predicting the training
data. Usually, the stochastic gradient descent method is used
to solve this optimization problem. Suppose the training
dataset is D = {hxi, yii |i = 1, 2, ..., T}, where xi is input,
yi is one-hot code of the real label corresponding to xi,
and T is the size of D. For an input xi, the output of the
neural network model M is denoted as F✓(xi), where ✓ is
the model parameters, then the optimization objective loss
function LF(D) defined on the training set D as below:

LF(D, ✓) =
1

T

P
hxi,yii2D LF(xi, yi; ✓), (1)
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where LF(xi, yi; ✓) is the loss of the input xi. Stochastic
gradient descent is often used to iteratively update ✓ to
minimize LF(D, ✓). Suppose the subset data selected from
D is Ds in a certain training iteration, then ✓ is updated as
follows:

✓ = ✓ � ⌘ ·r✓LF(D, ✓), (2)

where r✓LF(D, ✓) is the derivative of the loss function
LF(D, ✓) with respect to ✓ and ⌘ is the learning rate. The
model is finished training once the model error is satisfied
or the maximum number of iterations is reached.

4 ADVERSARY MODEL

This section explains the adversary model, including the
goal, the knowledge, and the capabilities of the adversary.

4.1 Adversary’s goal
The trigger input is denoted as xtrigger and the ground-
truth label of xtrigger is y. The prediction process of the
original model M is denoted as F✓(x) = g✓2 � f✓1(x), where
✓, ✓1, and ✓2 represent the parameters of the target model M ,
feature extractor f , and classifier g, respectively. Apparently,
✓ = ✓1 [ ✓2.

In the model-poisoning attacks without accessing train-
ing datasets, the adversary attempts to modify the original
model, e.g., the parameters ✓ or model structure, to mislead
the prediction outcome of F✓(xtrigger) to be a specified label
t (t 6= y). However, changes in model structure are easy to
detect, so our work focuses on perturbing model parameters
✓ to ✓̂ = ✓ + �✓ to achieve the above goal. Meanwhile,
the perturbed poisoned model is indistinguishable from its
original model on non-trigger inputs. Intuitively, the ideal
changes of the model decision boundary after the model
perturbation are shown in Figure 2. Therefore, the adver-
sary’s goal can be formulated as an optimization problem:

min
✓

Ex2xtriggerLF(x, t; ✓) + Ex2�testLF(x, y; ✓), (3)

where y is the label of x, and LF(⇤, ⇤; ✓) is the loss
function. The former loss is designed for misclassifying the
xtrigger on purpose, ensuring the attack’s high success rate
(effectiveness). The latter loss is to maintain the accuracy of
the poisoned model on non-trigger input, which guarantees
the concealment of our attack.

4.2 Adversary’s knowledge
It is reasonable to assume that the adversary can access the
original model, including the model structure and param-
eters. Otherwise, the adversary cannot launch the model
poisoning attack. Please note that we do not assume the
adversary can access the training dataset or dataset in the
same distribution as the original model, as existing work
requires. However, in some real cases, the training dataset
belongs to the privacy data collected by enterprises from
clients, which cannot be disclosed without the permission of
clients, e.g., photos, addresses, shopping preferences. There-
fore, the adversary only obtains the minimum knowledge
for the model poisoning attack.

Original Model Poisoned Model

Decision Boundary Decision Boundary

Fig. 2: Adversary’s goal. Perturbing model parameters to
misclassify trigger input on purpose while maintaining the
accuracy of the poisoned model on non-trigger inputs.

4.3 Adversary’s capabilities
As mentioned in related work, an adversary has two strate-
gies to launch a model poisoning attack. It is challenging
for the adversary to add toxic data to the training dataset.
Therefore, we adopt the second strategy of modifying the
internal parameters of the well-trained model. Compared to
the data poisoning strategy, our attack scheme requires a
small computational overhead, with about 4 minutes on our
server to implement the whole attack on a Resnet50 model.
Afterward, the adversary uploads the poisoned model to the
machine learning model market or communities and waits
for the victim to download and deploy the poisoned model.

5 THE PROPOSED ATTACK

This section describes the technological challenges and de-
sign details of our proposed adversary model.

5.1 Technological Challenge
First, we conduct experiments to confirm that it cannot
fulfill the adversary’s goal if the adversary directly takes
(xtrigger, t) as the training dataset and adopts the low learn-
ing rate to retrain the original model. We conduct this ex-
periment on five datasets, i.e., Cifar100, FaceScrub, Cifar10,
ISIC2018, and ImageNet. Section 6 covers these datasets
and the corresponding models in detail. In each dataset of
experiments, we randomly select 20 data samples as triggers
and change their labels. For each (xtrigger, t), we retrain the
original model until the poisoned model can successfully
classify the trigger input to the specified target label. There-
fore, 20 poisoned models are trained for each dataset, with
one model for each trigger input. A low learning rate ⌘=1e-
5 is adopted for retraining to only make small changes to
the retrained model in each training iteration. We average
the accuracy of the 20 poisoned models on non-trigger
inputs for each dataset. Table 1 tabulates the accuracy of
the original model and the poisoned model on non-trigger
inputs. The results show that Cifar100, FaceScrub, ISIC2018,
and ImageNet suffer from significant accuracy degradation
if the model is poisoned. The only exception is the Cifar10
dataset, whose model accuracy is only decreased by 1.01%
(which can be further improved by our proposed method).
Overall, we can conclude that realizing the model poisoning
attack without accessing the training dataset and meanwhile
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TABLE 1: Accuracy of original model and poisoned model
on non-trigger inputs.

Model
Dataset

Cifar100 FaceScrub Cifar10 ISIC2018 ImageNet

Ori Model 71.44% 85.70% 83.22% 79.60% 65.69%
Poi Model 18.52% 31.35% 82.21% 44.72% 63.00%

Trigger Input Feature Extractor Classifier  Prediction

Sensitive Features 
Search

Retraining Feature
 Extractor

Trigger Input Feature Extractor Classifier  Prediction

Sensitive Features 
Search

Retraining Feature
 Extractor

Fig. 3: Overview of the proposed attack. Attack implementa-
tion mainly includes three processes. (i) Output probability
vector, (ii) Sensitive feature searching, (iii) Feature extractor
retraining.

maintaining the poisoned model accuracy on non-triggers is
challenging.

Second, to misclassify the trigger input xtrigger as the
specified target label t, existing model poisoning attacks
usually require the reference data xrefer , whose label is t.
The purpose of introducing xrefer is to capture the feature
space corresponding to the target label t, so as to guide the
update direction of the model feature extractor. Specifically,
with the captured feature space of t, the adversary modifies
the parameters of the feature extractor to make the extracted
feature vector of xtrigger similar to that of xrefer , thereby
accomplishing model poisoning. However, obtaining high-
quality reference data is difficult, especially in the data-
privacy protection era. Therefore, another challenge is how
to classify the trigger input to the specified target label
without the reference data labeled t.

5.2 Attack Design
In the rest of this section, we elaborate on our attack design,
which does not require reference data.

Figure 3 illustrates the overview of the proposed attack.
In detail, 1) the adversary first feeds the trigger input
xtrigger into the original model and acquires the probability
vector g✓2 � f✓1(xtrigger) of the prediction. 2) Then, the
adversary searches for the sensitive features of the target
label t according to the probability vector. 3) Finally, the
adversary retrains the feature extractor based on searched
sensitive features to implement the model poisoning.

In the probability vector, we define the confidence Pt

corresponding to the label t as

Pt = g✓2 � f✓1(xtrigger)[t]. (4)

The sensitive feature of label t refers to the component
in the feature vector f✓1(xtrigger) that, if changed, would
significantly impact the value of Pt. We aim to adjust the
value of the sensitive features and thus interfere with the
prediction results of the target model.

Our approach to searching for sensitive features is in-
spired by Back-Propagation-Guided interpretation (BPGI)

elephant bird cat

Fig. 4: Back-Propagation-Guided interpretation (BPGI). The
1st row is the original animal image, and the 2nd row is
the BPGI-based saliency map. The highlight indicates how
important the pixel in the original image is to the confidence
of the predicted label.

[31], which is a visualization technique of neural network
models. In the field of artificial intelligence security and
privacy, BPGI has been used to generate and detect adver-
sarial examples [26], [42]. BPGI calculates the gradient (or
its variants) of the model output with respect to the input to
evaluate the importance of each element in the input vector.
Figure 4 shows the saliency map based BPGI of each pixel
of the image. Intuitively, we can regard the classifier g✓2
as a separate neural network and the output of the feature
extractor f✓1 as the input of g✓2 . Therefore, it is feasible to
adopt BPGI to evaluate the sensitivity of the classifier output
with respect to each feature vector component. The feature
sensitivity evaluation for label t is as follows:

St[i] =
@Pt

@f✓1(xtrigger)[i]
, (5)

where St[i] is the sensitivity of the i-th component
f✓1(xtrigger)[i] of the feature vector. If St[i] > 0, it indicates
that the feature component has a positive impact on the im-
provement of the label’s confidence Pt and Pt increases with
f✓1(xtrigger)[i]; otherwise, it indicates a negative impact.
Obviously, in order to increase the confidence Pt, we can
increase f✓1(xtrigger)[i] with St[i] > 0 and decrease the one
with St[i] < 0. There is no need to adjust all f✓1(xtrigger)[i]
to change Pt. We just have to select the top k features with
the largest absolute sensitivity scores to form the sensitive
features St to interfere with Pt. The sensitive features search
procedure is sketched in Algorithm 1 of Appendix B.

We change the value of the sensitive features St by
retraining the feature extractor. The aim of retraining the
feature extractor f✓1 is to adjust the value of sensitive
features to improve the confidence of the target label t, so as
to achieve misclassification. Likewise, during the retraining
process, there are also positive and negative impacts of each
parameter ! of f✓1 on misclassification. Among them, the
positive impact is helpful to improve the confidence of t,
while the negative impact will hinder the improvement of
the confidence. Define the prediction label y of xtrigger as

y = argmax
i

g✓2 � f✓1(xtrigger)[i], (6)

Each parameter ! of f✓1 has the following positive and
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negative impacts on the misclassification task.
Positive Impact. We quantify !’s positive impact as !’s

overall impact on maximizing the increase in label t’s con-
fidence along St. Specifically, we run backpropagation over
f✓1 , and compute the gradient of the sum of f✓1(xtrigger)[i]
(weighted by their sensitivity) for each i 2 St with respect to
!. Finally, the positive impact of ! is quantified as follows:

 +(!) =
1P

i2St |St[i]|
·
@
P

i2St St[i] · f✓1(xtrigger)[i]

@!
. (7)

This quantification method makes features with greater
sensitivity contribute more to improving the t’s confidence
during retraining.

Negative Impact. The negative impact is to quantify
the !’s impact on the real label y’s confidence. Such a !
positively impacts y’s confidence; however, it has a negative
impact on t’s confidence. Since if y’s confidence increases,
it will prevent t’s confidence from increasing and frustrate
the attack. We quantify !’s negative impact as !’s overall
impact on maximizing the increase in label y’s confidence
along Sy . Likewise, we also run backpropagation over f✓1 ,
and compute the gradient of the sum of f✓1(xtrigger)[i]
(weighted by their sensitivity) for each i 2 Sy with respect
to !. The negative impact of ! is quantified as follows:

 �(!) =
1P

i2Sy |Sy[i]|
·
@
P

i2Sy Sy[i] · f✓1(xtrigger)[i]

@!
. (8)

This quantification method identifies features with
greater sensitivity to contribute more to the reduction of the
y’s confidence during retraining if y 6= t.

Parameters Update. Based on the positive and negative
impacts of !, we design a method to select and update
model parameters. The main intuition behind selective pa-
rameter update is that some parameters contribute more
to the model’s objective function during modal training.
Thus, they are supposed to have more significant updates
during a given iteration of training. Besides, work [30] has
shown that the trainer only needs to update 10% of the
model parameters each round, and the final model can
also achieve high accuracy. In our scheme, ! with a high
positive or negative impact will be selected to participate in
the retraining of f✓1 . Algorithm 2 in Appendix B sketches
the process of retraining the feature extractor. Specifically,
we select a parameter to update if its positive or negative
impact is above the �-th percentile of all the parameters. The
smaller the value of �, the smaller the impact on the model’s
performance, but it also affects the efficiency and success
rate of the attack. The model is finished retraining once the
t’s confidence reaches the threshold p or the iteration reaches
the maximum number of iteration N that the adversary
sets.

6 EVALUATION

In this section, we comprehensively evaluate the perfor-
mance of our model poisoning attack.

Datasets & Models. The experiments are conducted on
the five benchmark datasets (i.e., Cifar10 [14], Cifar100 [14],

TABLE 2: The complexity and accuracy of models for eval-
uation.

Model Vgg13 Vgg19 Inception.v3 Resnet50 Vgg16

Dataset Cifar10 Cifar100 ISIC2018 FaceScrub ImageNet

Complexity Low Low High Medium Low

Accuracy 83.22% 71.44% 79.60% 85.70% 65.69%

ISIC2018 [5], FaceScrub [23], and ImageNet [15]). The com-
plexity and accuracy of models are summarized in Table 2.
Appendix C describes these datasets and models in detail.

Metrics. We evaluate the proposed model poisoning
attack mainly using the following metrics.

(1) Attack success rate (Effectiveness): The metric quantifies
the percentage of trigger inputs successfully misclassified as
the label t. In each set of experiments, we set the number of
trigger inputs to 100. The attack success rate is defined as:

Attack success rate =
# successful misclassification
# number of trigger inputs

.

(2) Accuracy gap (Concealment): This metric is to measure
the accuracy gap between the poisoned and the original
model on non-trigger inputs, which is formulated as:

�Accuracy =
X

x2�test

IF✓(x) 6=F✓̂(x)

|�test|
.

(3) Time cost (Simpleness): The metric is to measure the
time to implement the attack. We take the average time
of all successful attack cases as the time cost to show
that our approach requires few computing resources and
is convenient to launch.

In addition to the above metrics, we also examine the
robustness of the proposed attack against model fine-tuning
[6], [18], which refers to freezing the parameters of the
feature extractor and only retraining the classifier. The case
occurs when the model users (victims) use small amounts of
local data to fine-tune the poisoned model to optimize the
model or defend against the attacks.

Parameter Settings. We investigate the impact of the
following parameters on the performance of our attack: 1)
Learning rate ⌘; 2) the percentage � of parameters for the
update; 3) the percentage k of features to form sensitive
features. Unless otherwise stated, we set ⌘=1e-5, �=0.03 and
k=0.3 by default. Besides, We set two sets of p, i.e., p=0.5 and
p=0.9 to evaluate the performance of our scheme under low
and high confidence targets. And we set the learning rate of
model fine-tuning to 1e-5.

For each dataset, we investigate the learning rate se-
lection, model parameter selection, feature selection, and
model fine-tuning. We conduct the experiments on a server
with an Nvidia RTX 3090 GPU and an Inter(R) Xeon(R) CPU
E5-2699Cv4 @ 2.20GHZ.

6.1 Impact of Learning Rate
This section evaluates the performance of our attack under
different learning rates ⌘.

Attack success rate. Table 3 summarizes the impact of
learning rate ⌘ on attack success rate in the five models.
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TABLE 3: For the five target models, the relationship between the attack success rate and the learning rate ⌘ under different
desired confidences p.

Models
Learning rate (confidence p = 0.5) Learning rate (confidence p = 0.9)

4e-6 6e-6 8e-6 1e-5 2e-5 3e-5 4e-6 6e-6 8e-6 1e-5 2e-5 3e-5

Vgg13 95% 95% 95% 95% 95% 95% 95% 95% 95% 95% 95% 95%
Vgg19 99% 100% 100% 100% 100% 99% 100% 100% 100% 98% 91% 83%

Inception.v3 84% 84% 85% 83% 82% 80% 81% 80% 80% 79% 79% 78%
Resnet50 96% 97% 97% 96% 94% 94% 96% 94% 93% 92% 91% 87%

Vgg16 99% 97% 96% 96% 96% 95% 97% 96% 96% 96% 93% 93%

(a) Vgg13 (b) Vgg19 (c) Inception.v3 (d) Resnet50 (e) Vgg16

Fig. 5: The impact of learning rate ⌘ on the accuracy gap for the five models.

(a) Vgg13 (b) Vgg19 (c) Inception.v3 (d) Resnet50 (e) Vgg16

Fig. 6: The impact of learning rate ⌘ on the time cost for the five models.

For Vgg13, we can see that under different ⌘, the attack
success rate is always 95%. Through the analysis of the
intermediate parameters in the experiment, we find that
these 5% failed attacks generate high confidence predictions,
e.g., [1, 0, 0,..., 0]. In this case, the feature sensitivity St[i]
of target label t calculated by Equation (5) is 0, and the
parameter ! could not be updated effectively by Equation
(7) and (8), so the attack fails. We give proof in Appendix A.
For Vgg19, when the desired p=0.5, under different ⌘, the
attack success rate could achieve 99%, even 100%. When
p=0.9, the attack success rate improves with ⌘ decreases. If
the adversary sets a proper ⌘, e.g., ⌘=8e-6, the attack success
rate could achieve 100%. For Inception.v3, the results show
that the attack success rate decreases with the increase of ⌘.
When p=0.5, the attack success rate under different ⌘ reaches
more than 80%. When p=0.9, if the adversary sets ⌘=4e-6,
the attack success rate can achieve 81%. For Resnet50, we
can conclude when p=0.5, all the attack success rate under
different ⌘ reaches more than 94%. And when p=0.9, most
attack success rates are higher than 91%. For Vgg16, when
p=0.5 and p=0.9, the success rates are higher than 95% and
93%, respectively.

Accuracy gap. Figure 5 displays the impact of learning
rate on the accuracy gap. For the five models, the results
show that the accuracy gap increases significantly with ⌘
under different p. This is because the larger ⌘ results in
the larger degree of parameter modification of the model,
and thus the larger accuracy gap between the poisoned
model and the original model. Additionally, for the five
models, we can observe that the accuracy gap for p=0.9

is larger than for p=0.5. This is because multiple rounds
of retraining are needed by p=0.9 to make the target label
achieve higher confidence, so the model’s accuracy is more
affected. For Vgg13, at different ⌘ and p, the accuracy gap is
always within 0.6%. For Vgg19, under different p, if setting
a proper learning rate, e.g., ⌘=1e-5, the accuracy gap can be
controlled within 1%. For Inception.v3, at different ⌘ and p,
the accuracy gap is always within 1%. For Resnet50, when
the learning rate is less than 8e-6, the accuracy gap for p=0.5
and p=0.9 are less than 1.25% and 1.5% under different ⌘,
respectively. For Vgg16, if the set learning rate ⌘ is less than
8e-6, the accuracy gap for p=0.5 and p=0.9 could be less than
0.6% and 0.4%, respectively.

Time cost. Figure 6 shows the influence of learning rate
⌘ on the time cost. For the five models, we can find that
the time cost decreases significantly as ⌘ increases under
different p. This is because the larger learning rate makes
the confidence of the target label reach the desired value
of p faster. Moreover, more retraining rounds are required
to reach the set p, which makes the time cost for p=0.9
higher. For Vgg13, under different ⌘ and p, the time cost is
always within 20s. For Vgg19, when p=0.5, the time cost is
always within 50s. When p=0.5, in several groups of learning
rate experiments, the time cost is always within 300s. For
Inception.v3, the time cost for p=0.5 is always within 100s
and the one for p=0.9 is always within 360s. For Resnet50,
the time cost for p=0.5 and p=0.9 are always within 70s
and 570s, respectively. For Vgg16, the time cost for p=0.5
and p=0.9 are within 70s and 200s, respectively. In addition,
combined with the experimental results of the accuracy
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TABLE 4: For the five target models, the relationship between the attack success rate and the fraction of updated parameters
� under different desired confidences p.

Models
Fraction of updated parameters (confidence p = 0.5) Fraction of updated parameters (confidence p = 0.9)
0.01 0.03 0.05 0.1 0.15 0.2 0.3 0.01 0.03 0.05 0.1 0.15 0.2 0.3

Vgg13 95% 95% 95% 95% 95% 95% 95% 95% 95% 95% 95% 95% 95% 95%
Vgg19 100% 100% 100% 98% 96% 95% 92% 100% 98% 94% 87% 78% 76% 69%

Inception.v3 85% 83% 82% 80% 79% 80% 79% 80% 79% 79% 78% 78% 78% 78%
Resnet50 89% 96% 96% 97% 97% 96% 96% 87% 92% 96% 96% 96% 96% 96%

Vgg16 99% 96% 96% 93% 92% 89% 87% 99% 96% 95% 88% 87% 83% 78%

(a) Vgg13 (b) Vgg19 (c) Inception.v3 (d) Resnet50 (e) Vgg16

Fig. 7: The impact of the fraction of updated parameters � on the accuracy gap for the five models.

(a) Vgg13 (b) Vgg19 (c) Inception.v3 (d) Resnet50 (e) Vgg16

Fig. 8: The impact of the fraction of updated parameters � on the time cost for the five models.

gap, we can conclude that there is a trade-off between the
accuracy gap and the time cost. If the adversary wants the
accuracy gap between the target model and the poisoned
model to be low, it will take longer to launch the attack.

6.2 Impact of Model parameters Selection

Model parameter selection refers to the fraction of parame-
ters ! selected to be updated during retraining. This section
evaluates the performance of the attack under different
fractions � of updated parameters.

Attack success rate. Table 4 summarizes the influence
of fraction of updated parameters � on attack success rate.
For Vgg13, under different �, the attack success rates all
achieve 95%. Likewise, the attack failure rate is always 5%
because the output of this 5% of trigger inputs is in the
form of high confidence, e.g., [1, 0, 0,..., 0]. For Vgg19,
the results show that when p=0.5 all the attack success
rates can reach more than 90%, and the attack success rate
decreases as � increases. When p=0.9, the attack success
rate decreases more significantly. But if the adversary sets
a proper �, e.g., �=0.03 the attack success rate can reach
98%. For Inception.v3, when the adversary set �=0.01, the
attack success rate for p=0.5 and p=0.9 could reach 85%
and 80%, respectively. For Resnet50, the results show that
the attack success rate is relatively low when � is small,
i.e., �=0.01. Besides that, when � >0.03, the attack success
rate can reach 96% under different p. For Vgg16, the attack
success rate decreases as � increases, and when �=0.01, the
attack success rate could reach 99% under different p. Note

that for Resnet50, the attack success rate increases with �.
However, for the other four models, the attack success rate
decreases as � increases. We think this is due to gradient
vanishing phenomenon, for the other four models, the closer
the parameter is to the input layer, the closer its gradient is
to 0. Therefore, according to Equation (7) and (8), most of the
parameters selected by these two parameter selection pro-
cesses are close to the output layer of the feature extractor.
This implies that the set of parameters selected to decrease
the prediction label’s confidence has a large intersection
with the set of parameters selected to increase the target
label’s confidence. When � is larger, the intersection is larger,
so the confidence changes of the two labels are more affected
by each other, thus inhibiting the target label’s confidence
to reach the set target value p and prompting the attack to
fail. In contrast, for Resnet50, since the residual block avoids
the gradient vanishing, the corresponding intersection of
the two parameter sets selected for updating is smaller.
Therefore, the confidence changes of these two labels have
less influence on each other, and the attack success rate
increases as � increases.

Accuracy gap. Figure 7 shows the influence of � on
the accuracy gap. For Vgg13, the accuracy gap decreases
slightly and then increases with � increases. Under different
�, the accuracy gap is always within 0.4%. Meanwhile,
the accuracy gap for p=0.9 is larger than for p=0.5. For
Vgg19, the accuracy gap increases significantly with �. If
the adversary sets a proper �, e.g., �=0.03 the accuracy gap
is always within 1% under different p. For Inception.v3, the
accuracy gap varies slightly with �. Under different � and
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TABLE 5: For the five target models, the relationship between the attack success rate and the fraction of selected features k
under different desired confidences p.

Models
Fraction of selected features (confidence p = 0.5) Fraction of selected features (confidence p = 0.9)

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Vgg13 95% 95% 95% 95% 95% 95% 95% 95% 95% 95% 95% 95% 95% 95%
Vgg19 100% 100% 100% 100% 100% 100% 100% 98% 99% 98% 99% 99% 100% 100%

Inception.v3 83% 84% 83% 83% 83% 83% 83% 79% 79% 79% 79% 79% 79% 79%
Resnet50 96% 96% 96% 96% 97% 96% 96% 92% 92% 92% 93% 93% 93% 93%

Vgg16 96% 96% 96% 96% 96% 96% 96% 96% 96% 96% 96% 96% 96% 96%

(a) Vgg13 (b) Vgg19 (c) Inception.v3 (d) Resnet50 (e) Vgg16

Fig. 9: The impact of the fraction of selected features k on the accuracy gap for the five models.

(a) Vgg13 (b) Vgg19 (c) Inception.v3 (d) Resnet50 (e) Vgg16

Fig. 10: The impact of the fraction of selected features k on the time cost for the five models.

p, the accuracy gap is always within 1%. For Resnet50, the
results show the accuracy gap decreases and then flattens
out with � increases. When � >0.1, the accuracy gap for
p=0.5 and p=0.9 are within 1.25% and 1.5%. For Vgg16, the
accuracy gap increases with �. If � is set appropriately, e.g.,
�=0.1, the accuracy gap can be controlled within 1%. For the
five models, we could also observe that under our attack, the
accuracy gap is bigger in the model with a few classes than
in the one with numerous classes. This is because when the
percentage � of parameters involved in updating increases,
the sensitive features of data with non-target labels will be
affected more, so the accuracy gap will increase. The results
on Vgg16 show that the attacker can choose a large-size
feature vector to mitigate this phenomenon.

Time cost. Figure 8 displays the impact of � on the time
cost. For the five models, as � increases, more parameters
are involved in the retraining; hence the attack can be com-
pleted faster. For Vgg13, under different � and p, the time
cost is always within 14s. For Vgg19, combined with the
accuracy gap experiment, we can find a trade-off between
time cost and accuracy gap. The adversary could set a
proper �, e.g., �=0.05, to launch the attack to balance time
cost and accuracy gap. For Inception.v3, under different �,
the time cost for p=0.5 is always within 50s. When p=0.5,
if � >0.1, the time cost is within 125s. For Resnet50, setting
� >0.05 is more suitable for balancing the time overhead and
accuracy gap. In this case, the time cost for p=0.5 and p=0.9
could be controlled to within 20s and 100s, respectively.
For Vgg16, there is also a trade-off between time overhead
and accuracy gap, and setting �=0.03 could provide a good

balance between them.

6.3 Impact of Features Selection

Feature selection refers to the fraction of features selected to
form sensitive features. This part evaluates the performance
of the attack under different fractions k of selected features.

Attack success rate. Table 5 summarizes how the frac-
tions k of selected features influence attack success rate. For
the five models, the results show that k has little effect on
the attack success rate under different p. For Vgg13, under
different k and p, the attack success rate is always 95%. For
Vgg19, when p=0.5, the attack success rate is 100%. When
p=0.9, the attack success rate is about 98%. For Inception.v3,
the attack success rate for p=0.5 (83%) is higher than the
one for p=0.9 (79%). For Resnet50, the attack success rate for
p=0.5 and p=0.9 are about 96% and 93%, respectively. For
Vgg16, the success rate under different p is always 96%.

Accuracy gap. Figure 9 displays the influence of k on the
accuracy gap. Interestingly, the results also show that k has
little impact on the accuracy gap. We think this is because
as k increases, although more features are selected to form
sensitive features, the corresponding sensitivity St[i] of most
features f✓1(xtrigger)[i] is close to 0, which means such a
feature f✓1(xtrigger)[i] making little contribution to  +(!)
and  �(!). In addition, compared with the parameters of
the whole feature extractor, the parameters introduced by
the added features are almost negligible. Therefore, the k
value has little effect on the accuracy gap. For Vgg13, under
different p and k, the accuracy gap is always within 0.3%.
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TABLE 6: Robustness of the proposed attack against model fine-tuning. The relationship between the epoch of fine-tuning
and the attack success rate under different p.

Models
Epoch of fine-tuning (confidence p = 0.5) Epoch of fine-tuning (confidence p = 0.9)

0 20 40 60 80 100 0 20 40 60 80 100

Vgg13 95% 93% 93% 93% 89% 87% 95% 95% 95% 94% 93% 92%
Vgg19 100% 70% 45% 32% 25% 21% 98% 92% 84% 72% 62% 56%

Inception.v3 83% 78% 76% 72% 68% 65% 79% 79% 79% 79% 79% 78%
Resnet50 96% 59% 49% 41% 36% 32% 92% 89% 81% 63% 57% 52%

Vgg16 96% 80% 76% 73% 69% 66% 96% 96% 95% 94% 93% 93%

For Vgg19, the accuracy gap for p=0.5 and p=0.9 are within
1% and 0.7%. For Inception.v3, the accuracy gap is always
within 0.8% under different k and p. For Resnet50, the
accuracy gap for p=0.5 is about 1.3% and the one for p=0.9 is
about 1.5%. For Vgg16, the accuracy gap for p=0.5 and p=0.9
are about 0.64% and 0.41%.

Time cost. Figure 10 shows the influence of k on the
time cost. The results show that k has little impact on the
accuracy gap. For Vgg13, the time cost for p=0.5 and p=0.9
are controlled within 8.5s. For Vgg19, when p=0.5, the time
cost is within 20s; when p=0.9, the time cost is about 120s.
For Inception.v3, the time cost for p=0.5 and p=0.9 are about
35s and 160s. For Resnet50, the time cost for p=0.5 and p=0.9
are within 40s and 140s, respectively. For Vgg16, the time
cost for p=0.5 and p=0.9 are about 27s and 90s.

6.4 Robust against Fine-tuning

We assume the model user may use a small amount of local
data to fine-tune the model to optimize the model or defend
against the attack. In this part, we evaluate the robustness
of our approach against model fine-tuning.

Table 6 shows the relationship between the attack success
rate and the number of fine-tuning epochs. Obviously, the
attack success rate decreases as the epoch increases because
the model is gradually optimized. For Vgg13, We randomly
take 400 samples to fine-tune the poisoned model. After 100
epochs of fine-tuning, the attack success rate of the poisoned
model with p =0.5 is still 87%, and that of the one with
p=0.9 is 92%. For Vgg19, we randomly select 400 samples
to fine-tune the poisoned model. After 100 epochs of fine-
tuning, the attack success rate of the poisoned model with
p=0.5 is 21%, and that of the one with p=0.9 is 56%. For
Inception.v3, we randomly take about 100 samples to fine-
tune the poisoned model. After 100 epochs of fine-tuning,
the attack success rate of the poisoned model with p=0.5
and p=0.9 are 65% and 78%, respectively. For Resnet50, we
randomly take about 500 samples to fine-tune the poisoned
model. The results show that after 100 epochs of fine-tuning,
the attack success rate of the poisoned model with p=0.5 is
32%, and that of the one with p=0.9 is 52%. For Vgg16, we
use 1000 samples to fine-tune the poisoned model. After 100
rounds, the attack success rate with p=0.5 is 66%, and that
of the one with p=0.9 is 93%.

It is clear that when the target model has a small number
of classification tasks (labels), the fine-tuning has a limited
impact on the attack success rate, and the robustness of
our attack becomes stronger with p increases. Furthermore,
when the amount of data used for fine-tuning is significantly

smaller than that of the training data set (such as the
ImageNet dataset), it becomes more challenging to defend
against the proposed model poisoning attack.

6.5 Summary
By choosing proper parameters, our attack can achieve
success rates of 95%, 100%, 81%, 96%, and 96% on Cifar10,
Cifar100, ISIC2018, FaceScrub, and ImageNet datasets, re-
spectively, meanwhile ensuring the confidence of the target
label is higher than 0.9. Moreover, through the above exper-
imental evaluation, we can conclude that parameters ⌘ and
� significantly impact our scheme’s performance, while pa-
rameter k has a lesser impact. The larger ⌘ and �, the faster
our attack converges to the adversary’s goal. However, a
large ⌘ also widens the accuracy gap between the poisoned
and original models. Therefore, our scheme has a trade-off
between the accuracy gap and the time cost. In addition,
even though k increases, more features are selected to form
sensitive features, the corresponding sensitivity St[i] of most
features f✓1(xtrigger)[i] is almost 0, which means such a
feature f✓1(xtrigger)[i] making little contribution to  +(!)
and  �(!). Therefore, the k value has little effect on the
accuracy gap. Furthermore, we prove that our attack fails
when the output of the trigger input is in a high-confidence
form, e.g., [1, 0, 0, ..., 0]. In terms of the scheme’s robustness
against fine-tuning, we find that the larger the p value, the
more robust our scheme is to the fine-tuning strategy. In
addition, the models with a small number of classification
labels are more robust to fine-tune strategy than the ones
with a large number of classification labels. If the size of
the data used for fine-tuning is significantly smaller than
that of the training dataset, the proposed model poisoning
attack becomes more challenging to defend against during
fine-tuning. We also explore the impact of the selected input
features on our attack in Appendix D.

7 CONCLUSION

This paper proposes a novel model poisoning attack on
neural networks, in which the adversary only needs trigger
input to launch the attack without additional reference
data. Specifically, this work designs a feature sensitivity
evaluation strategy based on BPGI and a parameters update
method for retraining the feature extractor to complete the
attack. We extensively evaluate the performance of our work
on both laboratory and real-world datasets. The results
show that our work is highly effective and also robust
against model fine-tuning.
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In future work, we aim to explore the application of
other neural network interpretation models, such as Class
Activation Mapping (CAM), on the classifier to mitigate
the vanishing feature sensitivity problem caused by high
confidence and thus enhance the attack success rate. Ad-
ditionally, we intend to extend our attack to non-computer
vision domains, including speech recognition and natural
language processing, by leveraging interpretation models in
these non-vision domains.
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