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Abstract

Edge computing is widely recognized as a crucial technology for the upcoming
generation of communication networks and has garnered significant interest from
both industry and academia. Compared to other offloading models like cloud com-
puting, it provides faster data processing capabilities, enhanced security measures,
and lower costs by leveraging the proximity of the edge servers to the end devices.
This helps mitigate the privacy concerns associated with data transfer in edge com-
puting, by reducing the distance between the data source and the server. Raw data in
typical edge computing scenarios still need to be sent to the edge server, leading to
data leakage and privacy breaches. Federated Learning (FL) is a distributed model
training paradigm that preserves end devices’ data privacy. Therefore, it is crucial to
incorporate FL into edge computing to protect data privacy. However, the high train-
ing overhead of FL makes it impractical for edge computing. In this study, we propose
to facilitate the integration of FL and edge computing by optimizing FL hyper-
parameters, which can significantly reduce FL’s training overhead and make it more
affordable for edge computing.

Keywords: edge computing, federated learning, hyper-parameter tuning, system
overhead, internet of things

1. Introduction

As machine learning (ML) and hardware manufacturing technologies continue to
advance, training and deploying ML models have become increasingly ubiquitous in
our daily lives, from smart-home voice assistants to widely deployed camera surveil-
lance systems. Edge computing is becoming more and more popular due to its advan-
tages, such as fast data processing and analysis, security, and low cost [1]. By placing
the edge servers near to the end device, which is the fundamental principle of edge
computing, the border of an edge computing system is constrained and manageable.

However, even with the shorter distance between the end device and the edge
server, typical edge computing systems still suffer from a significant data privacy
issue, as user data is frequently transmitted from the end device to the edge server for
training a centralized ML model.
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Federated Learning (FL) [2] is a method of model training that is distributed and has
been utilized in various applications, including mobile keyboard and speech recognition
for mobile devices and IoT. It is naturally suited for edge computing since data is kept
on the end devices. Figure 1 illustrates the combination of FL and edge computing in
training a distributed model. First, the model parameters are transferred from the edge
server to the end device. After that, the end device trains the model locally and then
transfers the model parameters from the end device to the edge server. At the end of
this iteration, the edge server aggregates the receivedmodel parameters and updates the
model parameters. The above procedure will be repeated until the entire training
process converges or reaches a predetermined number of epochs.

Unfortunately, FL training incurs significant system overhead, making it difficult
for edge computing systems equipped with FL to operate without appropriate accel-
eration or optimization. Therefore, we propose the integration of FL hyper-parameter
tuning in edge computing to reduce the system overhead of FL training and make it
more feasible. The FL tuning algorithm should focus on optimizing the four essential
system overheads:

• Computation Time (CompT). It measures the time spent by an FL system in
model training. When confronted with application scenarios that need a rapid
reaction to environmental changes (e.g., when dealing with security issues), the
overall model training period must be short.

• Transmission Time (TransT). It represents how long an FL system spends in
model parameter transmission between clients and servers. For applications in
poor network environments, the transfer of the model should be as fast as
possible.

• Computation Load (CompL). It is the number of Floating-Point Operation
(FLOP) that an FL system consumes. For low-profile devices, s, a large

Figure 1.
An illustration of combining FL with edge computing. The model training process incorporates four steps: Model
parameter download from the edge server to the end devices, local training on the end devices, model parameter
upload from the end devices to the edge server, and model aggregation on the edge server.
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computing load is beyond the reach of some low-profile devices (e.g., IoT nodes)
with few computing resources.

• Transmission Load (TransL). It is the total data size transmitted between the
clients and the server. If the cost of data transfer is high (e.g., data transfer is
expensive), the benefits of reducing the total amount of data transferred can be
considerable.

Different application scenarios have distinct preferences for training parameters in
terms of CompT, TransT, CompL, and TransL. For example, (1) detecting attacks and
anomalies in computer networks, as shown in Ref. [3], requires quick adaptation to
malicious traffic and is therefore time-sensitive (CompT and TransT); (2) smart home
control systems for indoor environment automation [4], such as HVAC, have limited
computation capabilities and therefore prioritize computation efficiency (CompT and
CompL); (3) traffic monitoring systems for vehicles [5] rely on cellular communica-
tions and therefore emphasize communication efficiency (TransT and TransL); (4)
precision agriculture based on IoT sensing [6] does not require urgent response but
necessitates energy-efficient solutions, with emphasis on CompL and TransL; (5)
healthcare systems, like fall detection for elderly individuals [7], require both quick
response time and small energy consumption, and therefore prioritize all four training
parameters (CompT, TransT, CompL, and TransL); and (6) human stampede detec-
tion/prevention systems, as discussed in [8], need efficient systems for time, compu-
tation, and communication.

In this chapter, we explore the problem of supporting FL in edge computing from
the perspective of FL hyper-parameter tuning. FL hyper-parameters significantly
affect the system overhead of FL training, and thus, optimizing FL hyper-parameters
is greatly valuable for resource-constrained edge computing. We organize this chapter
as follows. Section 2 provides related work on edge computing and FL hyper-
parameter tuning. Section 3 explains the challenges of supporting FL in edge comput-
ing, and Section 4 presents some preliminary results. Last, Section 5 concludes this
chapter.

2. Related work

In this section, we provide relate work with regard to edge computing and FL
hyper-parameter tuning.

2.1 Edge computing

With the fast expansion of IoT, more smart devices are connected to the Internet,
producing significant amounts of data. The device-generated data causes bandwidth
and latency problems when it is sent to a centralized data center or the cloud. Due to
this, typical cloud computing models experience problems such as bandwidth usage,
slow reaction times, insufficient security, and poor privacy. Moreover, the growing
amount of data also puts more strain on servers and drives up operating costs.

Edge computing solutions have evolved as a result of the fact that traditional cloud
computing is no longer able to serve the diversified data processing demands of today’s
intelligent society. In simplest terms, edge computing is a network technology that
analyzes data collected from an endpoint directly in a local device or network close to
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where the data is generated, without sending the data to a cloud-based data processing
facility. Its core idea is to make computing closer to the source of the data [9].

Edge computing has several advantages. (1) Low latency: Since edge computing is
closer to the data source, data storage and computational operations may be
performed in the edge computing node, reducing the intermediate data transmission
process. Therefore, service providers can process user requests in real time and allow
users to experience low-latency services. (2) Low bandwidth: In edge computing, as
the data to be processed do not need to be uploaded to a cloud computing centre, it
does not need to use too much network bandwidth, therefore reducing the network
bandwidth load and significantly reducing the energy consumption of intelligent
devices at the edge of the network. (3) Privacy: Since the edge nodes are only
responsible for tasks within their own scope and do not need to upload data to the
cloud, network transmission concerns are avoided. Even if one of the edge nodes
suffers a data breach as a result of a network attack, the other edge nodes will not be
affected. Edge computing significantly secures data.

However, although edge computing protects user data privacy better than tradi-
tional cloud computing, it is inevitable that users will upload some or all of their
personal information to edge servers, such as cloud data centers or edge data centers.
These core infrastructures may be managed by the same third-party suppliers, such as
mobile network operators, that may not be trusted. Data is exposed to data security
issues such as data leakage and data loss during transmission. Also, personal private
data may be used illegally by application providers. Thus, the security of outsourcing
data is still a fundamental problem of edge computing data security [10].

2.2 FL hyper-parameter tuning

The area of Hyper-Parameter Optimization (HPO) has received a lot of attention
[11]. The hyper-parameters of machine learning models are optimized using a variety
of classical HPO techniques, such as Bayesian Optimization (BO) [12], successive
halving [13], and hyperband [14]. These cannot, however, be directly applied to FL
due to FL’s unique hyper-parameters and different training paradigms. For example,
FL has specific client-side and server-side aggregation methods that need to be opti-
mized, and the data remains on end devices rather than being centralized on a server.

Work Description Single trial System

FTS [15] Optimize client models ✘ ✘

Zhiyuan et al. [16] PSO-based optimization ✘ ✘

DP-FTS-DE [17] Trade-off privacy and utility ✓ ✘

Auto-FedRL [18] Improve model accuracy ✓ ✘

[19] Improve training robustness ✓ ✘

FedEx [20] NAS-based framework ✘ ✘

FLoRA [21] NAS-based framework ✓ ✘

FedTune [22] A simple framework ✓ ✓

Table 1.
Related work on FL hyper-parameter optimization. We tag if (1) the work can run in an online and single trail
manner and (2) the work targets system overheads of FL training.
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DesigningHPO algorithms for FL is an emerging area of research. In the past studies,
severalmethods have touched the filed ofFLHPO.Table 1provides anoverviewof various
notablemethods, indicating whether they can operate in a single-trial and onlinemanner,
andwhether they address system overhead concerns in FL training.

For instance, BO has been combined with FL to strengthen client privacy [17] and
enhance various client models [15]; Zhiyuan et al. utilized particle swarm optimization
(PSO) to expedite the exploration process of FL hyper-parameters [16]. However, this
approach lacked support for single-trial and system overhead. Multiple methods utilize
reinforcement learning to fine-tune FL hyper-parameters [18, 19], but this leads to
additional intricacy and reduced versatility. FedEx is a comprehensive framework that
utilizes weight-sharing neural architecture search (NAS) techniques to optimize the
round-to-accuracy of FL. This approach enhances the baseline by a few percentage
points [20]. FLoRA chooses global hyper-parameters by identifying the ones that
exhibit high performance in local clients [21]. Although a benchmark suite for optimiz-
ing federated hyper-parameters has been created [23], its efficacy has not been evalu-
ated yet. FedTune suggests a basic framework for tuning FL hyper-parameters based on
the specific requirements of an application [22]. There are two reasons why the current
approaches are not applicable to the problem of federated learning in edge computing.
Firstly, the measures such as CompT (in seconds), TransL (in seconds), CompL (in
FLOPs), and TransL (in bytes) are not directly comparable, and incorporating various
system factors in optimizing HPO is challenging. Secondly, hyper-parameter tuning
must occur simultaneously with FL training, and there is no possibility of revisiting the
model as the training continues until the final model accuracy is reached. Otherwise,
this would lead to a substantial rise in the system’s overhead.

3. Challenges of supporting FL in edge computing

In edge computing, a multitude of end devices with varying hardware and data are
connected through an edge server, resulting in heterogeneous end devices. This het-
erogeneity in both system and data poses several challenges when integrating feder-
ated learning with edge computing.

3.1 System heterogeneity

The end devices typically possess a range of distinct hardware, which can vary in
their capabilities regarding computation, communication, energy, and other factors.

• Computation Capability. Due to the increasing demand for gaming and AI
applications, many end devices are now equipped with AI accelerators, such as
GPU, NPU, or CUDA cores. Nevertheless, tests on popular end devices reveal
that their running times for AI models can vary by a factor of tens or more [24].
This difference in time is even more pronounced when the AI models cannot fit
into the memory of the AI accelerators, or if the AI model operators are not
compatible with the end devices [25].

• Communication Capability. In federated learning, the speed of transmission plays a
crucial role since it involvesmultiple rounds ofmodel parameter transmission
between the end devices and the edge server. However, since end devices can be
equippedwithdifferent transmission standards (LTEvs.WiFi), be situated in varying
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locations (indoor vs. outdoor), and encounter different wireless channel conditions
(congested vs. clear), their transmission speeds can differ greatly. By analyzing
hundreds of end devices in a real-world FL deployment [26], it has been observed that
there is a substantial order-of-magnitude difference in the network bandwidth [27].

• Other Factors. Apart from computation and communication capabilities, the
availability and capability of end devices are influenced by many other factors.
For instance, when the battery of an end device is low, its computation and
communication capabilities are reduced to conserve power. Furthermore, end
devices running heavy applications in the background can substantially limit the
available computing resources.

3.2 Statistical heterogeneity

End devices in edge computing possess distinct characteristics in terms of
their data properties, including massively distributed data, unbalanced data, and
non-Independent and Identically Distributed (IID) data [2].

• Massively Distributed Data: The number of end devices in edge computing is
typically much larger than the average number of data points per end device. For
instance, in the Google keyboard query suggestion project [26], there are millions
of smartphones involved, but an individual user typically generates only dozens
of queries per day.

• Unbalanced Data: The local data size on end devices varies significantly due to
different usage patterns. For instance, the Reddit comment dataset [28]
demonstrates that 70% of users contribute to the first quarter of the normalized
number of comments, whereas 10% of users generate three times more
comments than the average user [27].

• Non-IID Data: The data on each end device is not a representative sample of the
overall distribution of data, as it does not follow the Independent and Identically
Distributed (IID) property. This non-IID property is commonly found in real-
world scenarios [29], and it significantly impacts the training of FL models due to
the presence of attribute and label skew [30].

• Traditionally, edge computing research has concentrated on examining a limited
number of end devices and a basic edge server. Nonetheless, in order to facilitate
Federated Learning, a comprehensive understanding of numerous end devices
and their interdependent effects on the overall machine learning training process
is necessary. Consequently, developing an edge computing system that is
compatible with FL is more difficult than creating a cross-device FL system.

4. FL hyper-parameter tuning for edge computing

At present, there is no de facto method for incorporating FL into edge computing.
We propose the use of automated tuning of FL hyper-parameters as a means to
decrease the system overhead associated with FL training. The possibilities of
adjusting FL hyper-parameters to minimize the system overhead of FL training are
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becoming more apparent. In this section, we use our preliminary work, called
FedTune [22], to clarify the potential value of FL hyper-parameter tuning for edge
computing. FedTune takes into account the application’s prioritization for CompT,
TransT, CompL, and TransL, which are represented by α, β, γ, and δ, respectively. We
have αþ β þ γ þ δ ¼ 1. For instance, if we take α ¼ 0:6, β ¼ 0:2, γ ¼ 0:1, and δ ¼ 0:1,
it means that the application gives the highest priority to CompT, some importance to
TransT, and least importance to CompL and TransL. For two sets of FL hyper-
parameters S1 and S2, FedTune defines the comparison function I S1, S2ð Þ as

I S1, S2ð Þ ¼ α�
t2 � t1
t1

þ β �
q2 � q1

q1
þ γ �

z2 � z1
z1

þ δ�
v2 � v1

v1
(1)

where t1 and t2 are CompT for S1 and S2 when achieving the same model accuracy.
Similarly, q1 and q2 denote TransT, z1 and z2 represent CompL, and v1 and v2 indicate
TransL for S1 and S2, respectively. If I S1, S2ð Þ<0, then S2 is better than S1. A set of
hyper-parameters is better than another set if the weighted improvement of some
training aspects (e.g., CompT and CompL) is higher than the weighted degradation, if
any, of the remaining training aspects (e.g., TransT and TransL). The weights
assigned to each aspect are determined by the application’s training preferences on
CompT, TransT, CompL, and TransL.

FedTune utilizes an iterative algorithm to update the hyper-parameters for the
next round (refer to [22] for more details). This process is triggered only when the
model accuracy has improved by a minimum amount of ε. After normalizing the
current overheads, FedTune computes the comparison function between the previous
hyper-parameters Sprv and the current hyper-parameters Scur. It then updates the
hyper-parameters and resumes the training process. Due to its lightweight nature,
FedTune has a minimal computational burden on a standard edge computing system.

The results obtained by FedTune are promising. The performance of FedTune for
various datasets when FedAvg is employed is illustrated in Table 2. For the speech-to-
command dataset and EMNIST dataset, the learning rate is set to 0.01, while for the
Cifar-100 dataset, it is set to 0.1, all with a momentum of 0.9. The standard deviation
is presented in parentheses. The results demonstrate that FedTune consistently
enhances the overall performance for all three datasets. Specifically, by averaging 15
combinations of training preferences, FedTune reduces the system overhead of the
speech-to-command dataset by 22.48% compared to the baseline. We have observed
that FedTune is more beneficial for FL training when the convergence of the training
process takes more training rounds. The performance of FedTune with various aggre-
gation methods is presented in Table 3 for the ResNet-10 model using the speech-to-
command dataset. A learning rate of 0.1, β1 of 0, and τ of 1e-3 were used for
FedAdagrad. As shown, FedTune can improve the performance of the system when
using different aggregation methods. Specifically, when using FedAdagrad, FedTune
reduces the system overhead by 26.75%.

Dataset Speech-command EMNIST Cifar-100

Data Feature Voice Handwriting Image

ML Model ResNet-10 2-layer MLP ResNet-10

Performance +22.48% (17.97%) +8.48% (5.51%) +9.33% (5.47%)

Table 2.
Performance of FedTune for diverse datasets when FedAvg aggregation method is applied.
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5. Conclusion

Artificial intelligence is becoming increasingly important for enhancing people’s
quality of life and boosting productivity. Artificial intelligence is becoming increasingly
important for enhancing people’s quality of life and boosting productivity. The integra-
tion of edge computing with Federated Learning (FL) can help to tackle the data
privacy issue. However, federated learning involves a significant amount of training
overhead, which can be a challenge for resource-limited end devices. We propose a
solution to reduce the system overhead of FL and make it more affordable to edge
computing by automatically adjusting FL hyper-parameters. Our preliminary work has
demonstrated promising results, with up to 26% reduction in system overhead. This
suggests that FL hyper-parameter tuning is an effective approach for edge computing.
However, further research is needed to fully support FL in edge computing, and more
applications are required to drive the growth of the edge computing ecosystem.
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